A comparison between buoyant vortex rings and vortex pairs

Author:

Turner J. S.

Abstract

In this paper it is shown how earlier results for buoyant vortex rings may be extended to describe the corresponding two-dimensional case, which arises in the theory of bent-over plumes. It is again assumed that in uniform surroundings the circulation remains constant while the buoyancy acts to increase the momentum of the pair. The behaviour in two dimensions is quite different from that in three, however; a buoyant vortex ring spreads linearly with height, whereas a buoyant pair spreads exponentially with height, or linearly with time (and therefore, in a bent-over plume, linearly with distance downwind).The theory has been extended to describe the rise of buoyant rings and pairs through stably stratified surroundings having a linear density gradient. The behaviour near the maximum height reached is found to depend critically in both cases on the relative rates at which the circulation and the momentum fall to zero. If these reach zero together, the rings or pairs will steadily increase in size and come to rest at a finite height and with a finite radius. If the circulation is non-zero when the momentum vanishes, the radius begins to decrease soon after the buoyancy becomes zero, and the vortices will therefore tend to break up suddenly and mix into their surroundings. There is a considerable increase in the final height which should be attained by vortex rings or bentover plumes if the initial circulation is increased; it is suggested that releasing smoke intermittently, rather than continuously, at high velocity might be a means of increasing the effective height of chimneys in calm conditions. When the circulation reaches zero before the momentum does, the solutions indicate that the radius becomes very large near the level of zero buoyancy.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference7 articles.

1. Woodward, B. 1959 Quart. J. R. Met. Soc. 85,144.

2. Scorer, R. S. 1958 Natural Aerodynamics .London:Pergamon Press.

3. Lambs, H. 1932 Hydrodynamics ,6th ed.Cambridge University Press.

4. Turner, J. S. 1957 Proc. Roy. Soc. A,239,61.

5. Morton, B. R. 1959 J. Fluid Mech. 5,151.

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3