Cooling tower plume abatement and plume modeling: a review

Author:

Li ShuoORCID,Flynn M. R.

Abstract

AbstractVisible plumes above wet cooling towers are of great concern due to the associated aesthetic and environmental impacts. The parallel path wet/dry cooling tower is one of the most commonly used approaches for plume abatement, however, the associated capital cost is usually high due to the addition of the dry coils. Recently, passive technologies, which make use of free solar energy or the latent heat of the hot, moist air rising through the cooling tower fill, have been proposed to minimize or abate the visible plume and/or conserve water. In this review, we contrast established versus novel technologies and give a perspective on the relative merits and demerits of each. Of course, no assessment of the severity of a visible plume can be made without first understanding its atmospheric trajectory. To this end, numerous attempts, being either theoretical or numerical or experimental, have been proposed to predict plume behavior in atmospheres that are either uniform versus density-stratified or still versus windy (whether highly-turbulent or not). Problems of particular interests are plume rise/deflection, condensation and drift deposition, the latter consideration being a concern of public health due to the possible transport and spread of Legionella bacteria.

Funder

NSERC

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Environmental Chemistry

Reference161 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3