Small-amplitude perturbations of shape for a nearly spherical bubble in an inviscid straining flow (steady shapes and oscillatory motion)

Author:

Kang I. S.,Leal L. G.

Abstract

The method of domain perturbations is used to study the problem of a nearly spherical bubble in an inviscid, axisymmetric straining flow. Steady-state shapes and axisymmetric oscillatory motions are considered. The steady-state solutions suggest the existence of a limit point at a critical Weber number, beyond which no solution exists on the steady-state solution branch which includes the spherical equilibrium state in the absence of flow (e.g. the critical value of 1.73 is estimated from the third-order solution). In addition, the first-order steady-state shape exhibits a maximum radius at θ = ⅙π which clearly indicates the barrel-like shape that was found earlier via numerical finite-deformation theories for higher Weber numbers. The oscillatory motion of a nearly spherical bubble is considered in two different ways. First, a small perturbation to a spherical base state is studied with the ad hoc assumption that the steady-state shape is spherical for the complete Weber-number range of interest. This analysis shows that the frequency of oscillation decreases as Weber number increases, and that a spherical bubble shape is unstable if Weber number is larger than 4.62. Secondly, the correct steady-state shape up to O(W) is included to obtain a rigorous asymptotic formula for the frequency change at small Weber number. This asymptotic analysis also shows that the frequency decreases as Weber number increases; for example, in the case of the principal mode (n = 2), ω2 = ω00(1−0.31W), where ω0 is the oscillation frequency of a bubble in a quiescent fluid.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference18 articles.

1. Prosperetti, A. 1977 Viscous effects on perturbed spherical flows.Q. Appl. Maths 34,339–352.

2. Marston, P. L. 1980 Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stress: theory.J. Acoust. Soc. Am. 67,15–26.

3. Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability.Dover.

4. Busse, F. H. 1984 Oscillations of a rotating liquid drop.J. Fluid Mech. 142,1–8.

5. Vanden-Broeck, J.-M. & Keller, J. B. 1980 Bubble or drop distortion in a straining flow in two dimensions.Phys. Fluids 23,1491–1495.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3