Droplet oscillations in a turbulent flow

Author:

Roa Ignacio,Renoult Marie-Charlotte,Dumouchel Christophe,Brändle de Motta Jorge César

Abstract

The oscillations of an initially unperturbed spherical droplet immersed in a homogeneous and isotropic turbulent background flow are investigated through spherical harmonic decomposition. As suggested in the literature, the shape oscillations under turbulent conditions are related to the frequency of droplets oscillating in a fluid without background flow. A series of direct numerical simulations (DNS) of droplets with single deformation modes in a fluid at rest are first performed. The frequency and damping rate are compared with weakly viscous linear theory. Then, a database of 220 droplets deformed under turbulent conditions for a single Weber and Reynolds number is generated with an identical numerical set-up. Each spherical harmonic coefficient shows an oscillatory motion with comparable frequency to the single deformation mode simulations. The power spectrum of the coefficients provides the amount of surface of each mode. After a transient regime, the surface area reaches a stationary saturation level. The saturation level of each mode is linked to the turbulence and the energy stored at the interface. Droplets after a high deformation are studied with and without background flow. As expected, the physics of relaxation is driven by capillary forces.

Funder

Agence Nationale de la Recherche

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference53 articles.

1. A new dns formalism dedicated to turbulent two-phase flows with phase change;Germes Martinez;Int J Multiphase Flow,2021

2. The splitting of drops and bubbles by turbulent fluid flow;Sevik,1973

3. Oscillations and breakup of a bubble immersed in a turbulent field;Risso;J Fluid Mech,1998

4. A model for drop and bubble breakup frequency based on turbulence spectra;Lalanne;AIChE J,2019

5. On the capillary phenomena of jets;Rayleigh;Proc R Soc Lond,1879

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3