Flow and pressure drop in systems of repeatedly branching tubes

Author:

Pedley T. J.,Schroter R. C.,Sudlow M. F.

Abstract

The airways of the lung form a rapidly diverging system of branched tubes, and any discussion of their mechanics requires an understanding of the effects of the bifurcations on the flow downstream of them. Experiments have been carried out in models containing up to two generations of symmetrical junctions with fixed branching angle and diameter ratio, typical of the human lung. Flow visualization studies and velocity measurements in the daughter tubes of the first junction verified that secondary motions are set up, with peak axial velocities just outside the boundary layer on the inner wall of the junction, and that they decay slowly downstream. Axial velocity profiles were measured downstream of all junctions at a range of Reynolds numbers for which the flow was laminar.In each case these velocity profiles were used to estimate the viscous dissipation in the daughter tubes, so that the mean pressure drop associated with each junction and its daughter tubes could be inferred. The dependence of the dissipation on the dimensional variables is expected to be the same as in the early part of a simple entrance region, because most of the dissipation will occur in the boundary layers. This is supported by the experimental results, and the ratio Z of the dissipation in a tube downstream of a bifurcation to the dissipation which would exist in the same tube if Poiseuille flow were present is given by \[ Z = (C/4\surd{2})(Re\,d/L)^{\frac{1}{2}}, \] where L and d are the length and diameter of the tube, Re is the Reynolds number in it, and the constant C (equal to one for simple entry flow) is equal to 1·85 (the average value from our experiments). In general, C is expected to depend on the branching angles and diameter ratios of the junctions used. No experiments were performed in which the flow was turbulent, but it is argued that turbulence will not greatly affect the above results at Reynolds numbers less than and of the order of 10000. Many more experiments are required to consolidate this approach, but predictions based upon it agree well with the limited number of physiological experiments available.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3