Rapidly rotating thermal convection at low Prandtl number

Author:

DAWES J. H. P.

Abstract

Rotating Boussinesq convection in a plane layer is governed by two dimensionless groups in addition to the Rayleigh number R: the Prandtl number σ and the Taylor number Ta. Scaled equations for fully nonlinear rotating convection in the limit of rapid rotation and small Prandtl number, where the onset of convection is oscillatory, are derived by considering distinguished limits where σnTa1/2 ∼ 1 but σ → 0 and Ta → ∞, for different n > 1. In the resulting asymptotic expansion in powers of Ta−1/2 and the amplitude of convection. Three distinct asymptotic regimes are identified, distinguished by the relative importance of the subdominant buoyancy and inertial terms. For the most interesting case, n = 4, the stability of different planforms near onset is investigated using a double expansion in powers of Ta−1/8 and the amplitude of convection ε. The lack of a buoyancy term at leading order demands that the perturbation expansion be continued through six orders to derive amplitude equations determining the dynamics. The case n = 1 is also analysed. The relevance of this theory to experimental results is briefly discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3