A nonlinear model for rotationally constrained convection with Ekman pumping

Author:

Julien Keith,Aurnou Jonathan M.,Calkins Michael A.,Knobloch Edgar,Marti Philippe,Stellmach Stephan,Vasil Geoffrey M.

Abstract

A reduced model is developed for low-Rossby-number convection in a plane layer geometry with no-slip upper and lower boundaries held at fixed temperatures. A complete description of the dynamics requires the existence of three distinct regions within the fluid layer: a geostrophically balanced interior where fluid motions are predominantly aligned with the axis of rotation, Ekman boundary layers immediately adjacent to the bounding plates, and thermal wind layers driven by Ekman pumping in between. The reduced model uses a classical Ekman pumping parameterization to alleviate the need to resolve the Ekman boundary layers. Results are presented for both linear stability theory and a special class of nonlinear solutions described by a single horizontal spatial wavenumber. It is shown that Ekman pumping (which correlates positively with interior convection) allows for significant enhancement in the heat transport relative to that observed in simulations with stress-free boundaries. Without the intermediate thermal wind layer, the nonlinear feedback from Ekman pumping would be able to generate heat transport that diverges to infinity at finite Rayleigh number. This layer arrests this blowup, resulting in finite heat transport at a significantly enhanced value. With increasing buoyancy forcing, the heat transport transitions to a more efficient regime, a transition that is always achieved within the regime of asymptotic validity of the theory, suggesting that this behaviour may be prevalent in geophysical and astrophysical settings. As the rotation rate increases, the slope of the heat transport curve below this transition steepens, a result that is in agreement with observations from laboratory experiments and direct numerical simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3