Gravity currents with residual trapping

Author:

HESSE M. A.,ORR F. M.,TCHELEPI H. A.

Abstract

Motivated by geological carbon dioxide (CO2) storage, we present a vertical-equilibrium sharp-interface model for the migration of immiscible gravity currents with constant residual trapping in a two-dimensional confined aquifer. The residual acts as a loss term that reduces the current volume continuously. In the limit of a horizontal aquifer, the interface shape is self-similar at early and at late times. The spreading of the current and the decay of its volume are governed by power-laws. At early times the exponent of the scaling law is independent of the residual, but at late times it decreases with increasing loss. Owing to the self-similar nature of the current the volume does not become zero, and the current continues to spread. In the hyperbolic limit, the leading edge of the current is given by a rarefaction and the trailing edge by a shock. In the presence of residual trapping, the current volume is reduced to zero in finite time. Expressions for the up-dip migration distance and the final migration time are obtained. Comparison with numerical results shows that the hyperbolic limit is a good approximation for currents with large mobility ratios even far from the hyperbolic limit. In gently sloping aquifers, the current evolution is divided into an initial near-parabolic stage, with power-law decrease of volume, and a later near-hyperbolic stage, characterized by a rapid decay of the plume volume. Our results suggest that the efficient residual trapping in dipping aquifers may allow CO2 storage in aquifers lacking structural closure, if CO2 is injected far enough from the outcrop of the aquifer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 257 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3