On Kolmogorov's inertial-range theories

Author:

Kraichnan Robert H.

Abstract

Consistency and uniqueness questions raised by both the 1941 and 1962 Kolmogorov inertial-range theories are examined. The 1941 theory, although unlikely from the viewpoint of vortex-stretching physics, is not ruled out just because the dissipation fluctuates; but self-consistency requires that dissipation fluctuations be confined to dissipation-range scales by a spacewise mixing mechanism. The basic idea of the 1962 theory is a self-similar cascade mechanism which produces systematically increasing intermittency with a decrease of scale size. This concept in itself requires neither the third Kolmogorov hypothesis (log-normality of locally averaged dissipation) nor the first hypothesis (universality of small-scale statistics as functions of scale-size ratios and locally averaged dissipation). It does not even imply that the inertial range exhibits power laws. A central role for dissipation seems arbitrary since conservation alone yields no simple relation between the local dissipation rate and the corresponding proper inertial-range quantity: the local rate of energy transfer. A model rate equation for the evolution of probability densities is used to illustrate that even scalar nonlinear cascade processes need not yield asymptotic log-normality. The approximate experimental support for Kolmogorov's hypothesis takes on added significance in view of the wide variety ofa prioriadmissible alternatives.If the Kolmogorov law$E(k) \propto k^{-\frac{5}{3}-\mu}$is asymptotically valid, it is argued that the value of μ depends on the details of the nonlinear interaction embodied in the Navier–Stokes equation and cannot be deduced from overall symmetries, invariances and dimensionality. A dynamical equation is exhibited which has the same essential invariances, symmetries, dimensionality and equilibrium statistical ensembles as the Navier–Stokes equation but which has radically different inertial-range behaviour.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 332 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3