Abstract
We conduct experiments on gravitational phase separation of binary immiscible fluids using an oil–water mixture and study how the volumetric and viscosity ratios of the two phases control the separation process. First, we change the volumetric fraction of the two phases. We find that the initial phase separation rate depends strongly on the volumetric ratio of the two phases, and can be modelled by a buoyancy-driven permeable flow using the Blake–Kozeny–Carman permeability formula. Next, we change the viscosity ratios of the two fluids, and we find that there are two distinct regimes with different styles of phase separation. Small viscosity ratio (<100) cases are characterized by a sharp lower boundary and a vertically homogeneous mixture layer. On the other hand, high viscosity ratio (>100) cases are characterized by a diffuse lower boundary and a large vertical gradient of porosity. A polyhedral foam structure develops at the top of the mixture layer which is slow to rupture and to transform into a uniform oil layer. These differences can be interpreted to arise from a faster coalescence rate relative to the separation rate at high viscosity ratios. We simultaneously measured electrical resistivity in order to monitor the temporal change of the mean porosity in the mixture layer. The measurements were found to be consistent with the visual observation.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference46 articles.
1. Stokesian Dynamics
2. The viscosity of magmatic silicate liquids; a model calculation
3. Numerical simulation of a concentrated emulsion flows;Lowenberg;Trans ASME: J. Fluids Engng,1998
4. Numerical simulation of a concentrated emulsion in shear flow
5. Late-stage phase separation and sedimentation in a binary liquid mixture;Cau;Phys. Rev.,1993
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献