The film drainage problem in droplet coalescence

Author:

Jones A. F.,Wilson S. D. R.

Abstract

A small drop of liquid 1 falls through a less dense liquid 2 and approaches the horizontal interface between liquid 2 and an underlying layer of liquid 1. After a short time the drop will be brought to rest (or nearly) in a hollow in the interface. Before the drop can coalesce with its bulk phase, the thin film of liquid 2 trapped between them must be squeezed out, and become sufficiently thin that rupture can occur. This is the film drainage problem. Early calculations, based on simple lubrication theory, fail to take proper account of two effects which are investigated here and shown to be decisive. They are the circulation induced in the drop and in the lower bulk fluid, which tends to speed up drainage, and the constriction in the film thickness at its periphery, which tends to slow it down. This constriction has been observed and some existing theories have attempted to model it in an ad hoc manner. We give here a physical explanation and calculate the minimum thickness explicitly. The effect of circulation in the adjacent fluids is also calculated.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3