Abstract
When two small fluid drops are sufficiently close, the van der Waals force overcomes surface tension and deforms the surfaces into contact, initiating coalescence. The dynamics of surface deformation across an inviscid gap falls into two distinct regimes (Stokes and inertial–viscous) characterized by the forces that balance the van der Waals attraction at leading order (viscosity, and both inertia and viscosity). The previously studied Stokes regime holds for very viscous drops but fails for less viscous drops as inertia becomes significant before contact is reached. We show that the subsequent inertial–viscous dynamics is self-similar as contact is approached, with the gap width decreasing as
$t{'^{3/8}}$
and the radial scale of the deformed region decreasing as
$t{'^{1/2}}$
as
$t{'}\to 0$
, for time until contact
$t'$
. The self-similar behaviour is universal and is the generic asymptotic behaviour observed in time-dependent simulations. The unique self-similar gap profile of the inertial–viscous regime suggests new initial conditions for the coalescence of the drops after contact.
Funder
Engineering and Physical Sciences Research Council
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献