Spatially decaying turbulence and its relation to mixing across density interfaces

Author:

Hopfinger E. J.,Toly J.-A.

Abstract

The turbulence generated by a vertically oscillating grid in a water tank and the entrainment across a salinity interface caused by this turbulence have been investigated experimentally. Measurements were carried out in a homogeneous layer of fluid as well as a two-layered fluid, which permitted us to determine the decay law of this turbulence and the way in which the structure of the turbulence depends on the mesh size and on the frequency and amplitude of the grid oscillation. It was found that the turbulent kinetic energy decays with distance from the grid according to a power law$\overline{q^2}\propto z^{-n}$, withnclose to 2, and that the turbulent Reynolds number remains approximately constant during decay. The linear dependence of the r.m.s. turbulent velocity on the grid oscillation frequency found by Thompson & Turner (1975) in the case of a square-bar grid has been confirmed. It is shown here that this linear relation remains valid when an interface is present and consequently the dependence of the entrainment velocity on the local Richardson number is of the form$u_e/u \propto Ri^{-\frac{3}{2}}$, the Péclet number being high. While the bearing of these results on the problem of the thermocline or an inversion is clear we wish to emphasize that the spatial decay of turbulence is interesting in itself.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 333 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3