Impact of Salinity on the Erosion Threshold, Yield Stress, and Gelatinous State of a Cohesive Clay

Author:

San Juan Jorge E.12ORCID,Wei William G.1ORCID,Yang Judy Q.1ORCID

Affiliation:

1. St. Anthony Falls Laboratory Department of Civil, Environmental, and Geo‐Engineering University of Minnesota Twin Cities Minneapolis MN USA

2. Department of Civil, Construction, and Environmental Engineering North Carolina State University Raleigh NC USA

Abstract

AbstractClay is the main component that contributes to sediment cohesiveness. Salinity impacts its transport, which controls the electrochemical force among the sediment grains. Here, we quantify the impacts of salinity on the erosion threshold, yield stress, and the microstructures of a fluorescently labeled smectite clay, laponite, by combining flume experiments, rheometer measurements, and macro‐ and microscopic imaging. We show that the critical shear stress for clay erosion, τb,crit, increases by one order of magnitude with increasing salinity when salinity <1.5 ppt and slightly decreases when salinity >1.5 ppt showing a weaker dependency upon salinity. We further show that the yield stress, τy, of the clay remains roughly a constant at salinity less than 1.5 ppt and decreases by over one order of magnitude at salinity larger than 1.5 ppt. This change in the dependency of τb,crit and yield stress on salinity corresponds to a change in the gelatinous state of clay, from gel‐like structures to phase‐separated structures as salinity increases. Our results provide a quantitative characterization of the dependency of clay erosion threshold and yield stress on salinity and highlight the importance of the clay gelatinous state in controlling clay transport.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3