A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4

Author:

GOBBI MAURÍCIO F.,KIRBY JAMES T.,WEI GE

Abstract

A Boussinesq-type model is derived which is accurate to O(kh)4 and which retains the full representation of the fluid kinematics in nonlinear surface boundary condition terms, by not assuming weak nonlinearity. The model is derived for a horizontal bottom, and is based explicitly on a fourth-order polynomial representation of the vertical dependence of the velocity potential. In order to achieve a (4,4) Padé representation of the dispersion relationship, a new dependent variable is defined as a weighted average of the velocity potential at two distinct water depths. The representation of internal kinematics is greatly improved over existing O(kh)2 approximations, especially in the intermediate to deep water range. The model equations are first examined for their ability to represent weakly nonlinear wave evolution in intermediate depth. Using a Stokes-like expansion in powers of wave amplitude over water depth, we examine the bound second harmonics in a random sea as well as nonlinear dispersion and stability effects in the nonlinear Schrödinger equation for a narrow-banded sea state. We then examine numerical properties of solitary wave solutions in shallow water, and compare model performance to the full solution of Tanaka (1986) as well as the level 1, 2 and 3 solutions of Shields & Webster (1988).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3