Boussinesq-type equations of hydroelastic waves in shallow water

Author:

Tang ShanranORCID,Xiong Yingfen,Zhu Liangsheng

Abstract

Accurate computation of hydroelastic waves in shallow water is critical because many hydroelastic wave applications are nearshores, such as sea-ice and floating infrastructures. In this paper, Boussinesq assumptions for shallow water are employed to derive nonlinear Boussinesq-type equations of hydroelastic waves, in which non-uniform distribution of structural stiffness and varying water depth are considered rigorously. Application of Boussinesq assumptions enables complicated three-dimensional problems to be reduced and formulated on the two-dimensional horizontal plane, therefore the proposed Boussinesq-type models are straightforward and versatile for a wide range of hydroelastic wave applications. Two configurations, a floating plate and a submerged plate, are studied. The first-order linear governing equations are solved analytically with periodic conditions assuming constant depth and uniform stiffness, and the linear dispersion relations are subsequently derived for both configurations. For flexural-gravity waves of a floating plate, unique behaviours of flexural-gravity waves different from shallow-water waves are discussed, and a generalized solitary wave solution is investigated. A nonlinear numerical solver is developed, and nonlinear flexural-gravity waves are found to have smaller wavelength and celerity than their linear counterparts. For hydroelastic waves of a submerged plate, dual-mode analytical solutions are discovered for the first time. Numerical computation has demonstrated that a plate with decreasing submerged depth is able to transfer wave energy from the deeper water to the surface layer.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3