Abstract
Accurate computation of hydroelastic waves in shallow water is critical because many hydroelastic wave applications are nearshores, such as sea-ice and floating infrastructures. In this paper, Boussinesq assumptions for shallow water are employed to derive nonlinear Boussinesq-type equations of hydroelastic waves, in which non-uniform distribution of structural stiffness and varying water depth are considered rigorously. Application of Boussinesq assumptions enables complicated three-dimensional problems to be reduced and formulated on the two-dimensional horizontal plane, therefore the proposed Boussinesq-type models are straightforward and versatile for a wide range of hydroelastic wave applications. Two configurations, a floating plate and a submerged plate, are studied. The first-order linear governing equations are solved analytically with periodic conditions assuming constant depth and uniform stiffness, and the linear dispersion relations are subsequently derived for both configurations. For flexural-gravity waves of a floating plate, unique behaviours of flexural-gravity waves different from shallow-water waves are discussed, and a generalized solitary wave solution is investigated. A nonlinear numerical solver is developed, and nonlinear flexural-gravity waves are found to have smaller wavelength and celerity than their linear counterparts. For hydroelastic waves of a submerged plate, dual-mode analytical solutions are discovered for the first time. Numerical computation has demonstrated that a plate with decreasing submerged depth is able to transfer wave energy from the deeper water to the surface layer.
Funder
National Natural Science Foundation of China
Publisher
Cambridge University Press (CUP)