Crossflow disturbances in three-dimensional boundary layers: nonlinear development, wave interaction and secondary instability

Author:

Malik M. R.,Li F.,Chang C.-L.

Abstract

Nonlinear stability of a model swept-wing boundary layer, subject to crossflow instability, is investigated by numerically solving the governing partial differential equations. The three-dimensional boundary layer is unstable to both stationary and travelling crossflow disturbances. Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble quite well the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in these calculations. Nonlinear interaction of the stationary and travelling waves is also studied. When initial amplitude of the stationary vortex is larger than the travelling mode, the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the travelling mode dominates the downstream development owing to its higher growth rate. It is also found that, prior to laminar/turbulent transition, the three-dimensional boundary layer is subject to a high-frequency secondary instability, which is in agreement with the experiments of Poll (1985) and Kohama, Saric & Hoos (1991). The frequency of this secondary instability, which resides on top of the stationary crossflow vortex, is an order of magnitude higher than the frequency of the most-amplified travelling crossflow mode.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Dagenhart, J. R. , Saric, W. S. , Mousseux, M. C. & Stack, J. P. 1989 AIAA Paper 89-1892.

2. Meyer, F. & Kleiser, L. 1988In AGARD Conf. Proc. 438, p.16–1.

3. Gray, W. E. 1952 R. Aeronaut. Establ. Tech. Memo. (Aero) 256.

4. Spalart, P. R. 1989In Laminar-Turbulent Transition (ed. D. Arnal & R. Michel ), p.622.Springer.

5. Malik, M. R. 1986In 10th Intl Conf. on Numerical Methods in Fluid Dynamics (ed. F. G. Zhuang & Y. L. Zhu ), p.455.Springer.

Cited by 218 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3