Streamwise-Elongated Sinusoidal Roughness Elements with Enhanced Laminarizing Effect on Three-Dimensional Boundary Layer

Author:

Hirota Makoto1ORCID,Ide Yuki2,Hattori Yuji1

Affiliation:

1. Tohoku University, Sendai, Miyagi 980-8577, Japan

2. Japan Aerospace Exploration Agency, Chofu, Tokyo 182-8522, Japan

Abstract

As a laminar flow control device for delaying the crossflow-induced transition of a three-dimensional boundary layer, sinusoidal roughness elements (SREs) are placed in a Falkner–Skan–Cooke boundary layer, and the resultant laminarizing effect is numerically investigated in comparison with discrete roughness elements (DREs). Because SREs are elongated in the streamwise direction and designed to avoid flow tripping, the critical height of SREs is much higher than that of DREs. Moreover, the wake flow behind SREs efficiently generates and sustains crossflow vortices that are not dangerously unstable against secondary instabilities but able to strongly distort the mean crossflow profile into a less unstable one. By measuring this mean flow distortion by SREs and DREs, the laminarizing effect is compared among them. It is shown that the effect of SREs is higher than that of DREs and can be enhanced by choosing the appropriate height, angle, and wavelength depending on the local boundary-layer profile.

Funder

New Energy and Industrial Technology Development Organization

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3