A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids

Author:

Gluckman Michael J.,Pfeffer Robert,Weinbaum Sheldon

Abstract

This paper is the first in a series of investigations having the overall objective of developing a new technique for treating the slow viscous motion past finite assemblages of particles of arbitrary shape. The new method, termed the multi-pole representation technique, is based on the theory that any object conforming to a natural co-ordinate system in a particle assemblage can be approximated by a truncated series of multi-lobular disturbances in which the accuracy of the representation is systematically improved by the addition of higher order multipoles. The essential elements of this theory are illustrated by examining the flows past finite line arrays of axisymmetric bodies such as spheres and spheroids which conform to special natural co-ordinate systems. It is demonstrated that this new procedure converges more rapidly and is simpler to use than the method of reflexions and represents the desired boundaries more precisely than the point-force approximation even when the objects are touching one another. Comparison of these solutions with the exact solutions of Stimson & Jeffery (1926) for the two sphere problem demonstrates the rapidity of convergence of this multipole procedure even when the spheres are touching. Drag results are also presented for flows past chains containing up to 101 spheres as well as for chains containing up to 15 prolate or oblate spheroids. The potential value of the technique is suggested by the rapidity with which the drag calculations were made, the 101 sphere problem requiring about 10 seconds on an IBM 360–65 computer to determine both the fluid flow and the drag coefficient.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference29 articles.

1. Wakiya, S. 1965 J. Phys. Soc. Japan,20 (8),1502.

2. O'Brien, V. 1968 A.I.Ch.E. J. 14 (6), 870.

3. Slack, G. W. & Matthews, H. W. 1961 Porton Tech. Paper, Chemical Defence Exptl. Establishment, Porton, no. 797.

4. Burgers, J. M. 1940 Proc. Konigl. Akad. Wetenschap. (Amsterdam), 43,425,646.

5. Gluckman, M. J. , Weinbaum, S. & Pfeffer, R. 1971a A new technique for treating slow viscous flows: axisymmetric flow past arbitrary bodies of revolution. To be published.

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3