Laminar flow past a sphere rotating in the streamwise direction

Author:

KIM DONGJOO,CHOI HAECHEON

Abstract

Numerical simulations are conducted for laminar flow past a sphere rotating in the streamwise direction, in order to investigate the effect of the rotation on the characteristics of flow over the sphere. The Reynolds numbers considered are Re = 100, 250 and 300 based on the free-stream velocity and sphere diameter, and the rotational speeds are in the range of 0 [les ] ω* [les ] 1, where ω* is the maximum azimuthal velocity on the sphere surface normalized by the free-stream velocity. At ω* = 0 (without rotation), the flow past the sphere is steady axisymmetric, steady planar-symmetric, and unsteady planar-symmetric, respectively, at Re = 100, 250 and 300. Thus, the time-averaged lift forces exerted on the stationary sphere are not zero at Re = 250 and 300. When the rotational speed increases, the time-averaged drag force increases for the Reynolds numbers investigated, whereas the time-averaged lift force is zero for all ω* > 0. On the other hand, the lift force fluctuations show a non-monotonic behaviour with respect to the rotational speed. At Re = 100, the flow past the sphere is steady axisymmetric for all the rotational speeds considered and thus the lift force fluctuation is zero. At Re = 250 and 300, however, the flows are unsteady with rotation and the lift force fluctuations first decrease and then increase with increasing rotational speed, showing a local minimum at a specific rotational speed. The vortical structures behind the sphere are also significantly modified by the rotation. For example, at Re = 300, the flows become ‘frozen’ at ω* = 0.5 and 0.6, i.e. the vortical structures in the wake simply rotate without temporal variation of their strength and the magnitude of the instantaneous lift force is constant in time. It is shown that the flow becomes frozen at higher rotational speed with increasing Reynolds number. The rotation speed of the vortical structures is shown to be slower than that of the sphere.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3