Hydromagnetic instability of a free shear layer at small magnetic Reynolds numbers

Author:

Gotoh Kanefusa

Abstract

The effect of a uniform and parallel magnetic field upon the stability of a free shear layer of an electrically conducting fluid is investigated. The equations of the velocity and the magnetic disturbances are solved numerically and it is shown that the flow is stabilized with increasing magnetic field. When the magnetic field is expressed in terms of the parameter N (= M2/R2), where M is the Hartmann number and R is the Reynolds number, the lowest critical Reynolds number is caused by the two-dimensional disturbances. So long as 0 [les ] N [les ] 0·0092 the flow is unstable at all R. For 0·0092 < N [les ] 0·0233 the flow is unstable at 0 < R < Ruc where Ruc decreases as N increases. For 0·0233 < N < 0·0295 the flow is unstable at Rlc < R < Ruc where Rlc increases with N. Lastly for N > 0·0295 the flow is stable at all R. When the magnetic field is measured by M, the lowest critical Reynolds number is still due to the two-dimensional disturbances provided 0 [les ] M [les ] 0·52, and Rc is given by the corresponding Rlc. For M > 0·52, Rc is expressed as Rc = 5·8M, and the responsible disturbance is the three-dimensional one which propagates at angle cos−1(0·52/M) to the direction of the basic flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3