Abstract
We investigate the gravity-driven flow of a thin film of liquid metal on a conducting conical substrate in the presence of a strong toroidal magnetic field (transverse to the flow and parallel to the substrate). We solve the leading-order governing equations in a physically relevant asymptotic limit to find the free-surface profile. We find that the leading-order fluid flow rate is a non-monotonic bounded function of the film height, and this can lead to singularities in the free-surface profile. We perform a detailed stability analysis and identify values of the relevant geometric, hydrodynamic and magnetic parameters such that the flow is stable.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献