Abstract
We consider a thin horizontal layer of a non-magnetic electrolyte containing a bulk solution of salt and carrying an electric current. The layer is bounded by two deformable free surfaces loaded with an insoluble surfactant and is placed in a vertical magnetic field. The arising Lorentz force drives the electrolyte in the plane of the layer. We employ the long-wave approximation to derive general two-dimensional hydrodynamic equations describing symmetric pinching-type deformations of the free surfaces. These equations are used to study the azimuthal flow in an annular film spanning the gap between two coaxial cylindrical electrodes. In weakly deformed films, the base azimuthal flow and its linear stability with respect to azimuthally invariant perturbations are studied analytically. For relatively thick layers and weak magnetic fields, the leading mode with the smallest decay rate is found to correspond to a monotonic azimuthal velocity perturbation. The Marangoni effect leads to further stabilisation of the flow while perturbations of the solute concentration in the bulk of the fluid have no influence on the flow stability. In strongly deformed films in the diffusion-dominated regime, the azimuthal flow becomes linearly unstable with respect to an oscillatory mixed mode characterised by the combination of radial and azimuthal velocity perturbations when the voltage applied between electrodes exceeds the critical value.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献