Passive locomotion of a simple articulated fish-like system in the wake of an obstacle

Author:

ELDREDGE JEFF D.,PISANI DAVID

Abstract

The behaviour of a passive system of two-dimensional linked rigid bodies in the wake of a circular cylinder atRe=100 is studied computationally. The three rigid bodies are connected by two frictionless hinges, and the system (‘fish’) is initially aligned with a streamwise axis three diameters behind the cylinder. Once flow symmetry is broken, the wake rolls up into a Kármán vortex street in which the fish is stably trapped, and the passing large-scale vortices induce an undulatory shape change in the articulated system. It is found that, for certain fish lengths relative to cylinder diameter, the fish is propelled upstream toward the cylinder. Furthermore, the fish is propelled equally effectively when the hinges are locked, confirming that induced body undulation is not necessary for achieving a net thrust. An analysis of the forces on constituent bodies shows that leading-edge suction and negative skin friction on the forward portion of the fish are in competition with positive skin friction on the aft portion; propulsion is achieved when the forebody contributions dominate those on the aftbody. It is shown that the so-called ‘suction zone’ behind the cylinder that enables this passive propulsion is double the length of that without a fish present.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3