The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street

Author:

Liao James C.1,Beal David N.2,Lauder George V.1,Triantafyllou Michael S.2

Affiliation:

1. Department of Organismic and Evolutionary Biology, Harvard University,Cambridge, MA 02138, USA

2. Department of Ocean Engineering, Massachusetts Institute of Technology,Cambridge, MA 02139, USA

Abstract

SUMMARYMost fishes commonly experience unsteady flows and hydrodynamic perturbations during their lifetime. In this study, we provide evidence that rainbow trout Oncorhynchus mykiss voluntarily alter their body kinematics when interacting with vortices present in the environment that are not self-generated. To demonstrate this, we measured axial swimming kinematics in response to changes in known hydrodynamic wake characteristics. We compared trout swimming in the Kármán street behind different diameter cylinders (2.5 and 5 cm) at two flow speeds (2.5 and 4.5 Ls-1, where L is total body length) to trout swimming in the free stream and in the cylinder bow wake. Trout swimming behind cylinders adopt a distinctive, previously undescribed pattern of movement in order to hold station, which we term the Kármán gait. During this gait,body amplitudes and curvatures are much larger than those of trout swimming at an equivalent flow velocity in the absence of a cylinder. Tail-beat frequency is not only lower than might be expected for a trout swimming in the reduced flow behind a cylinder, but also matches the vortex shedding frequency of the cylinder. Therefore, in addition to choosing to be in the slower flow velocity offered behind a cylinder (drafting), trout are also altering their body kinematics to synchronize with the shed vortices (tuning), using a mechanism that may not involve propulsive locomotion. This behavior is most distinctive when cylinder diameter is large relative to fish length. While tuning, trout have a longer body wavelength than the prescribed wake wavelength, indicating that only certain regions of the body may need to be oriented in a consistent manner to the oncoming vortices. Our results suggest that fish can capture energy from vortices generated by the environment to maintain station in downstream flow. Interestingly, trout swimming in front of a cylinder display lower tail-beat amplitudes and body wave speeds than trout subjected to any of the other treatments, implying that the bow wake may be the most energetically favorable region for a fish to hold station near a cylinder.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference42 articles.

1. Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiol. Rev.69,1199-1227.

2. Anderson, J. M. (1996). Vorticity control for efficient propulsion. PhD thesis, Joint Program MIT/Woods Hole Oceanographic Institution.

3. Blake, R. W. (1983). Fish Locomotion. Cambridge: Cambridge University Press.

4. Blevins, R. D. (1990). Flow Induced Vibration, 2nd edition. Malabar, Florida: Krieger Publishing Company.

5. Bose, N. and Lien, J. (1990). Energy absorption from ocean waves: a free ride for cetaceans. Proc. R. Soc. Lond. B240,591-605.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3