Affiliation:
1. Department of Organismic and Evolutionary Biology, Harvard University,Cambridge, MA 02138, USA
2. Department of Ocean Engineering, Massachusetts Institute of Technology,Cambridge, MA 02139, USA
Abstract
SUMMARYMost fishes commonly experience unsteady flows and hydrodynamic perturbations during their lifetime. In this study, we provide evidence that rainbow trout Oncorhynchus mykiss voluntarily alter their body kinematics when interacting with vortices present in the environment that are not self-generated. To demonstrate this, we measured axial swimming kinematics in response to changes in known hydrodynamic wake characteristics. We compared trout swimming in the Kármán street behind different diameter cylinders (2.5 and 5 cm) at two flow speeds (2.5 and 4.5 Ls-1, where L is total body length) to trout swimming in the free stream and in the cylinder bow wake. Trout swimming behind cylinders adopt a distinctive, previously undescribed pattern of movement in order to hold station, which we term the Kármán gait. During this gait,body amplitudes and curvatures are much larger than those of trout swimming at an equivalent flow velocity in the absence of a cylinder. Tail-beat frequency is not only lower than might be expected for a trout swimming in the reduced flow behind a cylinder, but also matches the vortex shedding frequency of the cylinder. Therefore, in addition to choosing to be in the slower flow velocity offered behind a cylinder (drafting), trout are also altering their body kinematics to synchronize with the shed vortices (tuning), using a mechanism that may not involve propulsive locomotion. This behavior is most distinctive when cylinder diameter is large relative to fish length. While tuning, trout have a longer body wavelength than the prescribed wake wavelength, indicating that only certain regions of the body may need to be oriented in a consistent manner to the oncoming vortices. Our results suggest that fish can capture energy from vortices generated by the environment to maintain station in downstream flow. Interestingly, trout swimming in front of a cylinder display lower tail-beat amplitudes and body wave speeds than trout subjected to any of the other treatments, implying that the bow wake may be the most energetically favorable region for a fish to hold station near a cylinder.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference42 articles.
1. Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiol. Rev.69,1199-1227.
2. Anderson, J. M. (1996). Vorticity control for efficient propulsion. PhD thesis, Joint Program MIT/Woods Hole Oceanographic Institution.
3. Blake, R. W. (1983). Fish Locomotion. Cambridge: Cambridge University Press.
4. Blevins, R. D. (1990). Flow Induced Vibration, 2nd edition. Malabar, Florida: Krieger Publishing Company.
5. Bose, N. and Lien, J. (1990). Energy absorption from ocean waves: a free ride for cetaceans. Proc. R. Soc. Lond. B240,591-605.
Cited by
375 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献