Similarity in non-rotating and rotating turbulent pipe flows

Author:

OBERLACK MARTIN

Abstract

The Lie group approach developed by Oberlack (1997) is used to derive new scaling laws for high-Reynolds-number turbulent pipe flows. The scaling laws, or, in the methodology of Lie groups, the invariant solutions, are based on the mean and fluctuation momentum equations. For their derivation no assumptions other than similarity of the Navier–Stokes equations have been introduced where the Reynolds decomposition into the mean and fluctuation quantities has been implemented. The set of solutions for the axial mean velocity includes a logarithmic scaling law, which is distinct from the usual law of the wall, and an algebraic scaling law. Furthermore, an algebraic scaling law for the azimuthal mean velocity is obtained. In all scaling laws the origin of the independent coordinate is located on the pipe axis, which is in contrast to the usual wall-based scaling laws. The present scaling laws show good agreement with both experimental and DNS data. As observed in experiments, it is shown that the axial mean velocity normalized with the mean bulk velocity um has a fixed point where the mean velocity equals the bulk velocity independent of the Reynolds number. An approximate location for the fixed point on the pipe radius is also given. All invariant solutions are consistent with all higher-order correlation equations. A large-Reynolds-number asymptotic expansion of the Navier–Stokes equations on the curved wall has been utilized to show that the near-wall scaling laws for at surfaces also apply to the near-wall regions of the turbulent pipe flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3