The laminar flow of dilute polymer solutions through porous media

Author:

James David F.,Mclaren D. R.

Abstract

Measurements of the pressure drop and flow rate were obtained for dilute solutions of polyethylene oxide flowing through beds of packed beads. When the velocity was sufficiently high, the pressure drop was above that for a Newtonian fluid of equal viscosity, often considerably above, and this viscoelastic effect was explored by varying the concentration and molecular weight of the polymer, by testing solutions over a wide range of flow rates, and by using several bead sizes. The non-Newtonian behaviour was most pronounced at moderate flow rates; at the highest velocities, the data were pseudo-Newtonian in character, i.e. the pressure drop still exceeded that for a Newtonian fluid, but was linearly related to the velocity. For some solutions, the large deviation from Newtonian values occurred over such a short range of flow rates that there was an interval in which the pressure drop decreased with velocity. It was not possible, therefore, to obtain steady-state measurements in this regime and a gap appears in the data curve of pressure vs. velocity.The pressure drop was monitored in steps along the test section, so that it was possible to detect molecular degradation of the solutions as they flowed through the porous media. In general, degradation was not extensive and the solutions became stably degraded by the midpoint of the test section. Degradation increased with velocity and, quite surprisingly, became more severe as the bead size increased.A visual examination of the flow field revealed that the streamline pattern for the polymer solutions was the same as that for water. The large non-Newtonian effects were therefore due to changes in the stress field, and in an effort to understand these effects, an analysis was carried out which examined how the stresses generated by each component of the deformation, i.e. by shear and pure strain, influence the pressure drop. This analysis, combined with a study of onset data, indicates that onset and the sudden large departures from Newtonian values are probably due to an interaction between extensional and shearing deformation, and that the reduced viscoelastic effect of higher flow rates may be due to the dominance of extensional stresses.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference13 articles.

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3