Correct estimation of permeability using experiment and simulation

Author:

Khirevich Siarhei1ORCID,Yutkin Maxim1ORCID,Patzek Tadeusz W.1ORCID

Affiliation:

1. Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract

Estimation of permeability of porous media dates back to Henry Darcy [H. Darcy, Les Fontaines Publiques de la Ville de Dijon (Victor Dalmont, 1856)], and its knowledge is essential in many scientific and engineering endeavors. Despite apparent simplicity of permeability measurements, the literature data are scattered, and this scatter not always can be attributed to the precision of experiment or simulation or to sample variability. Here, we demonstrate an excellent agreement (<1%) between experiments and simulations, where experimental results are extensive and stable, while flow is simulated from first principles, directly on three-dimensional images of the sample, and without fitting parameters. Analyzing when experiments and simulations agree reveals a major flaw affecting many experimental measurements with the out-of-sample placement of pressure ports, including industry standards. The flaw originates from (1) incorrect calculation of the applied pressure gradient, (2) omitting virtual part of the measured system, and (3) pressure loss at the sample–tube contact. Contrary to common wisdom, the relative magnitude of (3) is defined by the sample–tube diameter ratio and is independent of the size of sample pores. Our findings are applicable to a wide range of permeability measurements, including geological-sample-type (Hassler cell) and membrane-type. The reported pressure loss (3) also affects two-phase flow measurements, such as capillary pressure estimation. Removing or taking the flaw into account advances the understanding and control of flow-related processes in complex geometries.

Funder

King Abdullah University of Science and Technology

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3