A branched one-dimensional model of vessel networks

Author:

FULLANA JOSE-MARIA,ZALESKI STÉPHANE

Abstract

We introduce a model representing the venous network of the leg. The network consists of a coupled system of elastic tubes. The flow through each elastic tube is assumed to be unsteady, incompressible and one-dimensional. The network topology, as well as the lengths and diameters of the tubes, is based on literature data. As in the human leg the network is composed of two sub-networks, deep and superficial, which are connected by transverse segments. We introduce a new model for confluences or branching points, as well as models of the valvular system and of the muscular activity. We perform a numerical study of the transmission and reflection of waves at a confluence. Our model valvular system imposes a privileged direction of the flow towards the heart. Muscular activity is modelled using a modification of the tube law of the vessel and through an inflow of blood when muscle contraction pushes blood from the microcirculation to the veins. The model is capable of simulating several motions such as walking, dorsal flexion and tiptoe. Numerical tests show the physical relevance of the model, and in particular demonstrate that when the system is excited at the foot level, a two-frequency response appears. These frequencies are closely related to the characteristic lengths of the typical segments of the deep and of the superficial networks. We find good qualitative agreement between experimental and numerical flow rates, using clinical data corresponding to a single ‘tiptoe’ motion. We make numerical predictions of the internal venous pressure at the foot level in a valvular-incontinent system which agree with clinical observations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3