Elastic jump propagation across a blood vessel junction

Author:

Spelman Tamsin A.1ORCID,Onah Ifeanyi S.2ORCID,MacTaggart David2ORCID,Stewart Peter S.2ORCID

Affiliation:

1. Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK

2. School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow G12 8SQ, UK

Abstract

The theory of small-amplitude waves propagating across a blood vessel junction has been well established with linear analysis. In this study, we consider the propagation of large-amplitude, nonlinear waves (i.e. shocks and rarefactions) through a junction from a parent vessel into two (identical) daughter vessels using a combination of three approaches: numerical computations using a Godunov method with patching across the junction, analysis of a nonlinear Riemann problem in the neighbourhood of the junction and an analytical theory which extends the linear analysis to the following order in amplitude. A unified picture emerges: an abrupt (prescribed) increase in pressure at the inlet to the parent vessel generates a propagating shock wave along the parent vessel which interacts with the junction. For modest driving, this shock wave divides into propagating shock waves along the two daughter vessels and reflects a rarefaction wave back towards the inlet. However, for larger driving the reflected rarefaction wave becomes transcritical, generating an additional shock wave. Just beyond criticality this new shock wave has zero speed, pinned to the junction, but for further increases in driving this additional shock divides into two new propagating shock waves in the daughter vessels.

Funder

Engineering and Physical Sciences Research Council

Petroleum Technology Development Fund

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3