On the instability of small gas bubbles moving uniformly in various liquids

Author:

Hartunian R. A.,Sears W. R.

Abstract

The instability of small gas bubbles moving uniformly in various liquids is investigated experimentally and theoretically.The experiments consist of the measurement of the size and terminal velocity of bubbles at the threshold of instability in various liquids, together with the physical properties of the liquids. The results of the experiments indicate the existence of a universal stability curve. The nature of this curve strongly suggests that there are two separate criteria for predicting the onset of instability, namely, a critical Reynolds number (202) and a critical Weber number (1.26). The former criterion appears to be valid for bubbles moving uniformly in liquids containing impurities and in the somewhat more viscous liquids, whereas the latter criterion is for bubbles moving in pure, relatively inviscid liquids.The theoretical analysis is directed towards an investigation of the possibility of the interaction of surface tension and hydrodynamic pressure leading to unstable motions of the bubble, i.e. the existence of a critical Weber number. Accordingly, the theoretical model assumes the form of a general perturbation in the shape of a deformable sphere moving with uniform velocity in an inviscid, incompressible fluid medium of infinite extent. The calculations lead to divergent solutions above a certain Weber number, indicating, at least qualitatively, that the interaction of surface tension and hydrodynamic pressure can result in instabilities of the bubble motion.A subsequent investigation of the time-independent equations, however, shows the presence of large deformations in shape of the bubble prior to the onset of unstable motion, which is not compatible with the approximation of perturbing an essentially spherical bubble. This deformation and its possible effects on the stability calculation are therefore determined by approximate methods. From this it is concluded that the deformation of the bubble serves to introduce quantitative, but not qualitative, changes in the stability calculation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference16 articles.

1. Lane, W. R. & Green, H. L. 1956 The mechanics of drops and bubbles; article in Surveys in Mechanics ,Cambridge University Press.

2. Saffman, P. G. 1956 On the rise of small air bubble in water,J. Fluid Mech.,1,249–275.

3. Bryn, T. 1949 Speed of rise of air bubbles in liquids,David Taylor Model Basin, Translation no. 132.

4. Datta, R. L. , Napier, D. H. & Newitt, D. M. 1950 The properties and behaviour of gas bubbles formed at a circular orifice,Trans. Instn Chem. Engrs.,28,14–26.

5. Stuke, B. 1952 Das Verhalten die Oberfläche von sich in Flüssigkeiten bewegenden Gasblasen,Naturwissenschaften,39,325–326.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3