Effects of N-Alkanol Adsorption on Bubble Acceleration and Local Velocities in Solutions of the Homologous Series from Ethanol to N-Decanol

Author:

Krzan Marcel1ORCID,Chattopadhyay Pradipta2,Orvalho Sandra3ORCID,Zednikova Maria3ORCID

Affiliation:

1. Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland

2. Department of Chemical Engineering, BITS-Pilani, Pilani PIN-333031, Rajasthan, India

3. Institute of Chemical Process Fundamentals of the CAS, Rozvojová 1, 165 00 Prague, Czech Republic

Abstract

The influence of n-alkanol (C2–C10) water solutions on bubble motion was studied in a wide range of concentrations. Initial bubble acceleration, as well as local, maximal and terminal velocities during motion were studied as a function of motion time. Generally, two types of velocity profiles were observed. For low surface-active alkanols (C2–C4), bubble acceleration and terminal velocities diminished with the increase in solution concentration and adsorption coverage. No maximum velocities were distinguished. The situation is much more complicated for higher surface-active alkanols (C5–C10). In low and medium solution concentrations, bubbles detached from the capillary with acceleration comparable to gravitational acceleration, and profiles of the local velocities showed maxima. The terminal velocity of bubbles decreased with increasing adsorption coverage. The heights and widths of the maximum diminished with increasing solution concentration. Much lower initial acceleration values and no maxima presence were observed in the case of the highest n-alkanol concentrations (C5–C10). Nevertheless, in these solutions, the observed terminal velocities were significantly higher than in the case of bubbles moving in solutions of lower concentration (C2–C4). The observed differences were explained by different states of the adsorption layer in the studied solutions, leading to varying degrees of immobilization of the bubble interface, which generates other hydrodynamic conditions of bubble motion.

Funder

National Science Centre of Poland

Erasmus Mobility Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient effects and the role of wetting in microbubble generation;Current Opinion in Colloid & Interface Science;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3