Unsteady natural convection in a triangular enclosure induced by absorption of radiation – a revisit by improved scaling analysis

Author:

MAO YADAN,LEI CHENGWANG,PATTERSON JOHN C.

Abstract

The present study is concerned with radiation-induced natural convection in a water-filled triangular enclosure with a sloping bottom, which is directly relevant to buoyancy-driven flows in littoral regions. An improved scaling analysis is carried out to reveal more detailed features of the flow than a previously reported analysis. Two critical functions of the Rayleigh number with respect to the horizontal position are derived from the scaling for identifying the distinctness and stability of the thermal boundary layer. Four flow scenarios are possible, depending on the bottom slope and the maximum water depth. For each flow scenario, the flow domain may be composed of multiple subregions with distinct thermal and flow features, depending on the Rayleigh number. The dividing points between neighbouring subregions are determined by comparisons of the critical functions of the Rayleigh number with the global Rayleigh number. Position-dependent scales have been established to quantify the flow properties in different subregions. The different flow regimes for the case with relatively large bottom slopes and shallow waters are examined in detail. The present scaling results are verified by numerical simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3