Transition of unsteady velocity profiles with reverse flow

Author:

DAS DEBOPAM,ARAKERI JAYWANT H.

Abstract

This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability ≃3δ where δ is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is ≃39/(Δū/δ), where Δu=(umaxumin) and umax, umin and δ are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is ≃33/(Δū/δ). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the velocity profile does change substantially. Using the results from the experiments and the stability analysis, we are able to explain many aspects of transition in oscillating pipe flow. We postulate that unsteady boundary layer separation at high Reynolds numbers is probably related to instability of the reverse flow region.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unified framework for laser-induced transient bubble dynamics within microchannels;Scientific Reports;2024-08-13

2. Stability of a Decelerated Flow in a Plane Channel;2023 8th International Conference on Mechanical Engineering and Robotics Research (ICMERR);2023-12-08

3. The onset of turbulence in decelerating diverging channel flows;Journal of Fluid Mechanics;2023-05-04

4. The circulation growth of non-impulsive starting jet;Physics of Fluids;2023-05-01

5. Navier-Stokes Solutions for Accelerating Pipe Flow—A Review of Analytical Models;Energies;2023-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3