The onset of turbulence in decelerating diverging channel flows

Author:

Sarath K.P.ORCID,Manu K.V.ORCID

Abstract

This work investigates the stability and transition to turbulence in a diverging channel subjected to a time-varying trapezoidal-shaped inflow boundary condition. Numerical simulations are performed for different deceleration rates and Reynolds numbers while maintaining a constant acceleration rate. The flow transition begins with two-dimensional primary instability with the formation of inflectional velocity profiles, followed by local separation and the emergence of an array of shear layer vortices. We divide simulation cases systematically into three categories based on the onset of secondary instability and the generation of streamwise vorticity. At low and medium Reynolds numbers (type I), the spanwise vortex rolls formed by inflectional instability remain two-dimensional and diffuse at the channel centre without exhibiting further instabilities. At high Reynolds numbers and deceleration rates (type II), the rolled shear layer exhibits secondary instability during the zero mean inflow phase, followed by local incipient turbulent structure formation. The streamwise vorticity that develops over the shear layer structures causes oscillations with a spanwise wavelength similar to those associated with the elliptic instability in a counter-rotating vortex pair. Using the Lamb–Oseen approximation of vortices in conjunction with the dynamic mode decomposition algorithm of the three-dimensional flow field, we captured successfully the characteristics of the secondary instability. The third category (type III) is characterized by periodic unsteady separation, secondary instability, and merging of shear layer vortices, which occurs when Reynolds numbers are high and deceleration rates are low.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3