Effect of free-stream turbulence on large structure in turbulent mixing layers

Author:

Chandrsuda C.,Mehta R. D.,Weir A. D.,Bradshaw P.

Abstract

Flow-visualization investigations and correlation measurements show that the essentially two-dimensional structures which dominated the turbulent mixing layer of Brown & Roshko (1974) are formed only if the free-stream turbulence is low. If free-stream disturbances are significant, as is likely in most practical cases, including a mixing layer entraining ‘still air’ from the surroundings, three-dimensionality develops at an early stage in transition. Other recent experiments strongly suggest that the Brown-Roshko structure will not form if the initial mixing layer is turbulent or subject to instability modes other than spanwise vortices. Therefore the Brown-Roshko structure will be rare in practice. The alternative large structure in a mixing layer, found by several workers, is intense, but fully three-dimensional and thus less orderly than the Brown-Roshko structure.The balance of evidence suggests that if the Brown-Roshko structure does appear it will eventually relax into the alternative fully three-dimensional form: the Kármán vortex street behind a bluff body provides a precedent for slow development of three-dimensionality. However the Brown-Roshko structure, if formed, may well relax so slowly as to be identifiable for the full length of a practical flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference31 articles.

1. Oster, D. , Wygnanski, I. & Fiedler, H. 1977 In Turbulence in the Internal Flows (ed. S. N. B. Murthy ),p.67.Hemisphere.

2. Pui, N. K. & Gartshore, I. S. 1977 Paper presented at 6th Can. Cong. Appl. Mech.

3. Benney, D. 1961 J. Fluid Mech. 10,209.

4. Johnston, J. P. , Halleen, R. M. & Lezius, D. K. 1972 J. Fluid Mech. 56,533.

5. Liepmann, H. W. & Laufer, J. 1947 N.A.C.A. Tech. Note no. 1257.

Cited by 179 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3