Direct numerical simulation of planar turbulent jets: Effect of a pintle orifice

Author:

Charles Prince1ORCID,Narasimhamurthy Vagesh D.1ORCID

Affiliation:

1. Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India

Abstract

The effects of a pintle-shaped orifice on a planar turbulent jet flow at Reynolds number 4000, based on the inlet bulk mean velocity and the jet width, are studied using direct numerical simulations. Flapping of the jet along with a low-frequency modulation of the Kelvin–Helmholtz (KH) instability, in the presence of a pintle-shaped orifice, is observed. To compare the pintle-jet behavior, a free-jet is simulated as a reference case. The effects of the near-field region on the far-field flow characteristics have been investigated. In both the cases, the KH instability in the near-field influences the far-field jet, whereas the pintle-jet also exhibits a low-frequency flapping. In addition, oblique vortex pattern has been observed in the case of pintle-jet. The far-field flow statistics of the pintle-jet with a top-hat inlet interestingly agree with those of the free-jet with a hyperbolic tangent inlet. Temporal variation of the jet characteristics has been analyzed using spatiotemporal plots. In addition, the large- and small-scale turbulent motion have been studied using three anisotropic invariant maps (turbulence triangles, eigenvalue, and barycentric maps). Moreover, that the barycentric map gives a better visualization of the anisotropic behavior has been observed in the current study.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3