Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point

Author:

FENG LI HAO,WANG JIN JUN

Abstract

The flow over a circular cylinder controlled by a two-dimensional synthetic jet positioned at the mean rear stagnation point has been experimentally investigated in a water channel at the cylinder Reynolds number Re = 950. This is an innovative arrangement and the particle-image-velocimetry measurement indicates that it can lead to a novel and interesting phenomenon. The synthetic-jet vortex pairs induced near the exit convect downstream and interact with the vorticity shear layers behind both sides of the cylinder, resulting in the formation of new induced wake vortices. The present vortex synchronization occurs when the excitation frequency of the synthetic jet is between 1.67 and 5.00 times the natural shedding frequency at the dimensionless stroke length 99.5. However, it is suggested that the strength of the synthetic-jet vortex pair plays a more essential role in the occurrence of vortex synchronization than the excitation frequency. In addition, the wake-vortex shedding is converted into a symmetric mode from its original antisymmetric mode. The symmetric shedding mode weakens the interaction between the upper and lower wake vortices, resulting in a decrease in the turbulent kinetic energy produced by them. It also has a significant influence on the global flow field, including the velocity fluctuations, Reynolds stresses and flow topology. However, their distributions are still dominated by the large-scale coherent structures.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3