Optimizing flow control with deep reinforcement learning: Plasma actuator placement around a square cylinder

Author:

Yousif Mustafa Z.1ORCID,Kolesova Paraskovia1ORCID,Yang YifanORCID,Zhang MengORCID,Yu LinqiORCID,Rabault Jean2ORCID,Vinuesa Ricardo3ORCID,Lim Hee-ChangORCID

Affiliation:

1. School of Mechanical Engineering, Pusan National University 1 , 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea

2. IT Department, Norwegian Meteorological Institute 2 , Postboks 43, 0313 Oslo, Norway

3. FLOW, Engineering Mechanics, KTH Royal Institute of Technology 3 , Stockholm 10044, Sweden

Abstract

This study introduces a deep reinforcement learning-based flow control approach to enhance the efficiency of multiple plasma actuators on a square cylinder. The research seeks to adjust the control inputs of these actuators to diminish both drag and lift forces on the cylinder, ensuring flow stability in the process. The proposed model uses a two-dimensional direct numerical simulation of flow past a square cylinder to represent the environment. The control approach involves adjusting the AC voltage across three specific configurations of the plasma actuators. Initially tested at a Reynolds number (ReD) of 100, this strategy was later applied at ReD of 180. We observed a 97% reduction in the mean drag coefficient at ReD = 100 and a 99% reduction at ReD = 180. Furthermore, the findings suggest that increasing the Reynolds number makes it harder to mitigate vortex shedding using plasma actuators on just the cylinder's rear surface. However, an optimized configuration of these actuators can fully suppress vortex shedding under the proposed control scheme.

Funder

National Research Foundation of Korea

European Resuscitation Council

Korea Institute of Energy Technology Evaluation and Planning

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3