The effect of surface contamination on thermocapillary flow in a two-dimensional slot

Author:

Homsy G. M.,Meiburg E.

Abstract

We consider the effect of insoluble surfactants on the steady thermocapillary flow in a differentially heated slot treated previously by Sen & Davis (1982). The equation of state for interfacial tension is taken to be linear in both temperature and surfactant concentration. We treat the problem in the limit of shallow slots and low thermal Marangoni numbers so that the effect of surfactants is described by only two parameters: a surface Péclet number Pe and an elasticity parameter denoted by E, the ratio of the compositional elasticity to the tension difference due to the imposed temperature difference. Using lubrication theory and matched asymptotic expansions, we reduce the problem to a single nonlinear integral–algebraic equation (for the outer core variables), which we solve both numerically and in various asymptotic limits by perturbation theory. It is shown that the general effect of surfactants is to retard the strength of the motion, but that this retardation is not necessarily uniform in space. Surprisingly, there are only extreme cases in which condensed surfactant layers will form, these being E [Lt ] 1, Pe [Gt ] 1. Sharp gradients in surfactant concentrations will not form in the general case of E = O(1). This behaviour is due to the strong coupling between the flow and the interfacial stress, and is contrasted with certain well-known forced-convection problems.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference17 articles.

1. Horton, T. J. , Fritsch, T. R. & Kinner, R. C. 1965 Can. J. Chem. Engng 43,143.

2. Whitaker, S. 1964 Ind. Engng Chem. Fund. 3,132.

3. Ostrach, S. 1982 Ann. Rev. Fluid Mech. 14,313.

4. Berg, J. C. & Acrivos, A. 1965 Chem. Engng Sci. 20,737.

5. Kenning, D. B. R. 1968 Appl. Mech. Rev. 21,1101.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3