Thermocapillary dynamics of a surfactant-laden droplet with internal thermal singularity

Author:

Basak ArindamORCID,Lakkaraju RajaramORCID,Raja Sekhar G.P.ORCID

Abstract

Thermocapillary droplets with internal thermal singularities have potential applications in drug delivery and cell analysis. Inspired by the work of Pak et al. (J. Fluid Mech., vol. 753, 2014, pp. 535–552), which was investigated for a surfactant-laden non-deformable droplet in an isothermal Poiseuille flow, we have explored the droplet dynamics by taking account of additional internal thermal singularities, namely monopole and dipole. A generalized mathematical model is developed, which is solved by using the solenoidal decomposition to describe the flow field in any arbitrary Stokes flow, and results are shown extensively for the case of a non-isothermal Poiseuille flow. Under small Péclet number ( $Pe_s$ ) limit, the droplet with an off-centred monopole or a dipole oriented along the flow direction shows cross-stream migration at $O(Pe_s^2)$ . However, a dipole oriented perpendicular to the flow direction results in an $O(1)$ effect due to thermocapillarity, and from $O(Pe_s)$ onwards, we observe the combined impact of thermocapillary and surfactant-induced Marangoni stresses. As a surprise, we see cross-stream migration of the droplet from the Poiseuille flow centreline in a non-isothermal field, in contrast to existing findings which rule out any cross-stream migration. We show the trade-off between thermal Marangoni number ( $Ma_T$ ) and surfactant Marangoni number ( $Ma_\varGamma$ ). Our findings on droplet dynamics inspire new possibilities for microfluidics-based design.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3