A study of particle paths in non-axisymmetric Taylor–Couette flows

Author:

ASHWIN P.,KING G. P.

Abstract

We study the paths of fluid particles in velocity fields modelling rigidly rotating velocity fields that occur in the concentric Taylor problem. We set up velocity fields using the model of Davey, DiPrima & Stuart (1968) based on small-gap asymptotics. This allows a numerical study of the Lagrangian properties of steady flow patterns in a rotating frame. The spiral and Taylor vortex modes are integrable, implying that in these cases almost all particle paths are confined to two-dimensional surfaces in the fluid. For the case of Taylor vortices the motion on these surfaces is quasi-periodic, whereas for spirals the particles propagate up or down the cylinder on these surfaces.The non-axisymmetric modes we consider are wavy vortices, spirals, ribbons and twisted Taylor vortices. All of these flows have the property that they are steady flows when examined in a rotating frame of reference. For all non-axisymmetric modes with the exception of spirals, we observe the existence of regions of chaotic mixing within the fluid. We discuss mixing of the fluid by these flows with reference to the pattern of stagnation points and some of the periodic trajectories within the fluid and on the boundary.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coherent structures of elastoinertial instabilities in Taylor–Couette flows;Journal of Fluid Mechanics;2024-05-07

2. Pattern formations in particle laden drum flows and Taylor–Couette flows with co-rotating cylinders;Physics of Fluids;2023-08-01

3. Particle motion in a Taylor vortex;International Journal of Multiphase Flow;2015-12

4. Droplet behavior in a Taylor vortex;International Journal of Multiphase Flow;2014-12

5. A modification of the invariant imbedding method for a singular boundary value problem;Communications in Nonlinear Science and Numerical Simulation;2014-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3