Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence

Author:

BRETHOUWER G.,HUNT J. C. R.,NIEUWSTADT F. T. M.

Abstract

This paper presents an analysis and numerical study of the relations between the small-scale velocity and scalar fields in fully developed isotropic turbulence with random forcing of the large scales and with an imposed constant mean scalar gradient. Simulations have been performed for a range of Reynolds numbers from Reλ = 22 to 130 and Schmidt numbers from Sc = 1/25 to 144.The simulations show that for all values of Sc [ges ] 0.1 steep scalar gradients are concentrated in intermittently distributed sheet-like structures with a thickness approximately equal to the Batchelor length scale η/Sc½ with η the Kolmogorov length scale. We observe that these sheets or cliffs are preferentially aligned perpendicular to the direction of the mean scalar gradient. Due to this preferential orientation of the cliffs the small-scale scalar field is anisotropic and this is an example of direct coupling between the large- and small-scale fluctuations in a turbulent field. The numerical simulations also show that the steep cliffs are formed by straining motions that compress the scalar field along the imposed mean scalar gradient in a very short time period, proportional to the Kolmogorov time scale. This is valid for the whole range of Sc. The generation of these concentration gradients is amplified by rotation of the scalar gradient in the direction of compressive strain. The combination of high strain rate and the alignment results in a large increase of the scalar gradient and therefore in a large scalar dissipation rate.These results of our numerical study are discussed in the context of experimental results (Warhaft 2000) and kinematic simulations (Holzer & Siggia 1994). The theoretical arguments developed here follow from earlier work of Batchelor & Townsend (1956), Betchov (1956) and Dresselhaus & Tabor (1991).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3