The diffuselet concept for scalar mixing

Author:

Meunier PatriceORCID,Villermaux EmmanuelORCID

Abstract

The advection–diffusion of a small surface element of scalar in three dimensions (or of a small line element in two dimensions) is solved analytically thanks to the Ranz transform (Ranz, AIChE J., vol. 25, issue 1, 1979, pp. 41–47). As the quantum or elementary brick of any complex mixture, we call this element a diffuselet. Its evolution is computed numerically from the integration of the velocity gradient along the trajectory, as classically done for the Lyapunov exponents. The concentration profile across the diffuselet is obtained from the product of its initial orientation with a dimensionless tensor. Averaging over all initial orientations yields simple formulae for the mean scalar variance and the scalar probability distribution function (p.d.f.). This technique is then applied to two-dimensional and three-dimensional sine flows, in excellent agreement with direct numerical simulations. For these simple flows, the temporal integration is obtained analytically leading to simple integrals for the scalar variance and p.d.f. Statistics of stretching rates are calculated as well. The Lyapunov exponent is close to the value for short-time correlated flows (Kraichnan, J. Fluid Mech., vol. 64, issue 4, 1974, pp. 737–762) in the case of a small displacement during each step; it is close to the value for a simple shear in the case of a large displacement. The p.d.f. of stretching factors are log normal with a ratio between the mean and the variance equal to half the dimension of space for small displacements (in agreement with Kraichnan, J. Fluid Mech., vol. 64, issue 4, 1974, pp. 737–762), but increases strongly for large displacements.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixing as a correlated aggregation process;Journal of Fluid Mechanics;2024-08-10

2. Mutual information as a measure of mixing efficiency in viscous fluids;Physical Review Research;2024-06-03

3. Identification of the continuum field structure at multiple scale levels;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-05-01

4. Connecting finite-time Lyapunov exponents with supersaturation and droplet dynamics in a turbulent bulk flow;Physical Review E;2024-04-01

5. Mixtures Recomposition by Neural Nets: A Multidisciplinary Overview;Journal of Chemical Information and Modeling;2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3