The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow

Author:

LI XIAOFAN,POZRIKIDIS C.

Abstract

The effect of an insoluble surfactant on the transient deformation and asymptotic shape of a spherical drop that is subjected to a linear shear or extensional flow at vanishing Reynolds number is studied using a numerical method. The viscosity of the drop is equal to that of the ambient fluid, and the interfacial tension is assumed to depend linearly on the local surfactant concentration. The drop deformation is affected by non-uniformities in the surface tension due to the surfactant molecules convection–diffusion. The numerical procedure combines the boundary-integral method for solving the equations of Stokes flow, and a finite-difference method for solving the unsteady convection–diffusion equation for the surfactant concentration over the evolving interface. The parametric investigations address the effect of the ratio of the vorticity to the rate of strain of the incident flow, the Péclet number expressing the ability of the surfactant to diffuse, the elasticity number expressing the sensitivity of the surface tension to variations in surfactant concentration, and the capillary number expressing the strength of the incident flow. At small and moderate capillary numbers, the effect of a surfactant in a non-axisymmetric flow is found to be similar to that in axisymmetric straining flow studied by previous authors. The accumulation of surfactant molecules at the tips of an elongated drop decreases the surface tension locally and promotes the deformation, whereas the dilution of the surfactant over the main body of the drop increases the surface tension and restrains the deformation. At large capillary numbers, the dilution of the surfactant and the rotational motion associated with the vorticity of the incident flow work synergistically to increase the critical capillary number beyond which the drop exhibits continuous elongation. The numerical results establish the regions of validity of the small-deformation theory developed by previous authors, and illustrate the influence of the surfactant on the flow kinematics and on the rheological properties of a dilute suspension. Surfactants have a stronger effect on the rheology of a suspension than on the deformation of the individual drops.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3