Coupled bulk and interfacial transport of surfactants governs the settling of a drop towards a wall

Author:

Jadhav Sayali N.,Mandal Shubhadeep,Ghosh UddiptaORCID

Abstract

Surfactant-like impurities are omnipresent in multiphase emulsions and may substantially affect the motion of small droplets by altering their interfacial properties. Usually these surfactants are soluble in the bulk and undergo adsorption–desorption onto the interface which modifies their surface concentration and hence their overall influence on droplet motion. Yet, the impact of the bulk solubility and transport of surfactants on droplet dynamics, especially in the presence of bounding walls, remains poorly understood. As such, in this article, we assess the impact of bulk soluble surfactants on the settling of a spherical drop towards a plane wall. We consider coupled bulk and interfacial transport of surfactants, mediated by adsorption–desorption processes and construct a semi-analytical framework for arbitrary values of ‘bulk interaction parameter’, which dictates the strength of adsorption–desorption kinetics compared with bulk diffusion. Our results indicate that while mass exchange between the bulk and the interface can remobilize the drop, a finite bulk diffusion rate restricts this process and therefore slows down the drop. This also results in bulk concentration depletion near the south pole and accumulation near the north pole, the extent of which becomes strongly asymmetric with an enhanced intensity of depletion, as the drop approaches the wall. Presence of the wall and bulk solubility are found to aid each other towards remobilizing the drop by aptly modifying the interfacial concentration. Our results may provide fundamental insights into the kinetics of surfactant-laden drops, with potential applications in food and pharmaceutical industries, separation processes, etc.

Funder

Science and Engineering Research Board

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3