Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. Sc≈1

Author:

BUCH KENNETH A.,DAHM WERNER J. A.

Abstract

Results are presented from an experimental study into the fine-scale structure of generic, Sc≈1, dynamically passive, conserved scalar fields in turbulent shear flows. The investigation was based on highly resolved, two-dimensional imaging of laser Rayleigh scattering, with measurements obtained in the self-similar far field of an axisymmetric coflowing turbulent jet of propane issuing into air at local outer-scale Reynolds numbers Reδuδ/v of 11000 and 14000. The resolution and signal quality of these measurements allowed direct differentiation of the scalar field data ζ(x, t) to determine the instantaneous scalar energy dissipation rate field (Re Sc)−1∇ζ·∇ζ(x, t). Results show that, as for large-Sc scalars (Buch & Dahm 1996), the scalar dissipation rate field consists entirely of strained, laminar, sheet-like diffusion layers, despite the fact that at Sc≈1 the scale on which these layers are folded by vorticity gradients is comparable to the layer thickness. Good agreement is found between the measured internal structure of these layers and the self-similar local solution of the scalar transport equation for a spatially uniform but time-varying strain field. The self-similar distribution of dissipation layer thicknesses shows that the ratio of maximum to minimum thicknesses is only 3 at these conditions. The local dissipation layer thickness is related to the local outer scale as λD/δ ≡ΛRe−3/4δSc−1/2, with the average thickness found to be 〈Λ〉=11.2, with both the largest and smallest layer thicknesses following Kolmogorov Re−3/4δ) scaling.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3