Gravity wave radiation from vortex trains in rotating shallow water

Author:

Ford Rupert

Abstract

Gravity wave radiation by vortical flows in the f-plane shallow-water equations is investigated by direct nonlinear numerical simulation. The flows considered are initially parallel flows, consisting of a single strip in which the potential vorticity differs from the background value. The flows are unstable to the barotropic instability mechanism, and roll up into a train of vortices. During the subsequent evolution of the vortex train, gravity waves are radiated. In the limit of small Froude number, the gravity wave radiation is compared with that predicted by an appropriately modified version of the Lighthill theory of aerodynamic sound generation. It is found that the gravity wave field agrees well with that predicted by the theory, provided typical lengthscales of vortical motions are well within one deformation radius.It is found that the nutation time for vortices in the train increases rapidly with increasing Froude number in cases where the potential vorticity in the vortices is of the same sign as the background value, whereas the nutation time is almost independent of Froude number in cases where the potential vorticity in the vortices is zero or of opposite sign to the background. Consequently, in the former cases, the unsteadiness of the flow decreases with increasing Froude number, so the effect of the inertial cutoff frequency is increased, leading to an optimal Froude number for gravity wave radiation, above which the intensity of the radiated waves decreases as the Froude number is further increased. It is proposed that the existence of a finite range of interaction within the vortices, for flows with positive vortex potential vorticity, may account for the strong dependence of nutation time on Froude number in those cases. The interaction scale within the vortices becomes infinite in the limit of zero vortex potential vorticity, and so the arguments do not apply in those cases.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference33 articles.

1. Norton, W. A. 1988 Balance and potential vorticity inversion in atmospheric dynamics.PhD thesis,University of Cambridge.

2. McWilliams, J. C. , Gent, P. R. & Norton, N. J. 1986 The evolution of balanced, low-mode vortices on the β-plane.J. Phys. Oceanogr. 16,838–855.

3. McWilliams, J. C. 1985 A uniformly valid model spanning the regimes of geostrophic and isotropic, stratified turbulence: balanced turbulence.J. Atmos. Sci. 42,1773–1774.

4. Ford, R. 1993 Gravity wave generation by vortical flows in a rotating frame.PhD thesis,University of Cambridge.

5. Lush, P. A. 1971 Measurements of subsonic jet noise and comparison with theory.J. Fluid Mech. 46,477–500.

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3