Energy Spectra and Vorticity Dynamics in a Two-Layer Shallow Water Ocean Model

Author:

Kevlahan Nicholas K.-R.1ORCID,Poulin Francis J.2

Affiliation:

1. a Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada

2. b Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

Abstract

Abstract The dynamically adaptive WAVETRISK-OCEAN global model is used to solve one- and two-layer shallow water ocean models of wind-driven western boundary current (WBC) turbulence. When the submesoscale is resolved, both the one-layer simulation and the barotropic mode of the two-layer simulations have an energy spectrum with a power law of −3, while the baroclinic mode has a power law of −5/3 to −2 for a Munk boundary layer. This is consistent with the theoretical prediction for the power laws of the barotropic and baroclinic (buoyancy variance) cascades in surface quasigeostrophic turbulence. The baroclinic mode has about 20% of the energy of the barotropic mode in this case. When a Munk–Stommel boundary layer dominates, both the baroclinic and barotropic modes have a power law of −3. Local energy spectrum analysis reveals that the midlatitude and equatorial jets have different energy spectra and contribute differently to the global energy spectrum. We have therefore shown that adding a single baroclinic mode qualitatively changes WBC turbulence, introducing an energy spectrum component typical of what occurs in stratified three-dimensional ocean flows. This suggests that the first baroclinic mode may be primarily responsible for the submesoscale turbulence energy spectrum of the oceans. Adding more vertical layers, and therefore more baroclinic modes, could strengthen the first baroclinic mode, producing a dual cascade spectrum (−5/3, −3) or (−3, −5/3) similar to that predicted by quasigeostrophic and surface quasigeostrophic models, respectively. Significance Statement This research investigates how wind energy is transferred from the largest ocean scales (thousands of kilometers) to the small turbulence scales (a few kilometers or less). We do this by using an idealized model that includes the simplest representation of density stratification. Our main finding is that this simple model captures an essential feature of the energy transfer process. Future work will compare our results to those obtained using ocean models with more realistic stratifications.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Compute Canada

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3