Energy transfer in turbulent polymer solutions

Author:

CASCIOLA C. M.,DE ANGELIS E.

Abstract

The paper addresses a set of new equations concerning the scale-by-scale balance of turbulent fluctuations in dilute polymer solutions. The main difficulty is the energy associated with the polymers, which is not of a quadratic form in terms of the traditional descriptor of the micro-structure. A different choice is however possible, which, at least for mild stretching of the polymeric chains, directly leads to an L2 structure for the total free-energy density of the system thus allowing the extension of the classical method to polymeric fluids. On this basis, the energy budget in spectral space is discussed, providing the spectral decomposition of the energy of the system. New equations are also derived in physical space, to provide balance equations for the fluctuations in both the kinetic field and the micro-structure, thus extending, in a sense, the celebrated Kármán–Howarth and Kolmogorov equations of classical turbulence theory. The paper is limited to the context of homogeneous turbulence. However the necessary steps required to expand the treatment to wall-bounded flows of polymeric liquids are indicated in detail.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3